On the modeling of hyperspectral remote-sensing reflectance of high-sediment-load waters in the Vis-SWIR domain

Zhongping Lee,1 Shaoling Shang,2 Gong Lin,2 Jun Chen,1,3 David Doxaran 4

1 School for the Environment, University of Massachusetts Boston, Boston, MA 02125
2 State Key Lab of Marine Environmental Science, Xiamen University, Xiamen 361005, China
3 Qingdao Institute of Marine Geology, Qingdao 266071, China
4 Laboratoire d’Océanographie de Villefranche, UMR 7093, CNRS/UPMC, France

Abstract:
We evaluated three key components in modeling hyperspectral remote sensing reflectance in the visible to shortwave-infrared (Vis-SWIR) domain of high-sediment-load (HSL) waters, which are: the relationship between remote-sensing reflectance (r_s) and inherent optical properties (IOP), absorption coefficient of pure water (a_w) in the IR-SWIR region, and the spectral variation of sediment absorption coefficient (a_{sed}). Results from this study indicate that it is necessary to use a more sophisticated r_s-IOP model to describe the spectral variation of r_s of HSL waters, otherwise it may result in spectrally distorted r_s spectrum if a constant model parameter is used. For a_w in the IR-SWIR region, the values reported in Kou et al (1993) provided a much better match with the spectral variation of r_s. For a_{sed} spectrum, an empirical a_{sed} spectral shape derived from sample measurements is found working much better than the traditional exponential-decay function of wavelength in modeling the spectral variation of r_s in the visible domain. These results would improve our understandings of the spectral signatures of r_s of HSL waters in the Vis-SWIR domain and subsequently improve the retrieval of IOPs and sediment loading of such waters from ocean color remote sensing.

1. Is r_s model adequate for Vis-SWIR?

$$r_s(\lambda) = g \frac{b_h(\lambda)}{a(\lambda) + b_p(\lambda)}$$

(Eq. 1)

How g varies with $b_p/(a+b_p)$?

$$g(\lambda) = \frac{b_h(\lambda)}{b_p(\lambda) + b_p(\lambda)} + 0.197 \left(1 - 0.636 \exp \left(-2.552 \frac{b_h(\lambda)}{a(\lambda) + b_p(\lambda)} \right) \right)$$

(Eq. 2)

2. Which a_w spectrum to use?

Fig. 2 (Left) Spectrum of a_w, and their NFDs, respectively; S_81: Segelstein 1981; K_93: Kou et al 1993. (Right) Comparison between the spectrum of the NFD of an Rrs spectrum and the NFDs of 1/a_w spectrum.

3. Is a_{sed} an exponential function?

Fig. 3. Comparison between exponential function (red) and measured a_{sed} spectral shape (green), and their NFDs (red and blue, respectively). Exponential function does not accurately reflect the spectra curvature of a_{sed}. An empirical model is developed for a_{sed} shape.

$$a_{sed}(\lambda) = A_{sed}(440)a_{sed}(\lambda) + B_{sed}$$

5. Conclusions:
1) Because the model parameter (g) of r_s varies widely for different combinations of b_p and a, it is necessary to employ a more generalized r_s model developed for aquatic environments; 2) The hyperspectral a_w spectrum of Kou et al is found working very well in representing the Rs spectral shape in the NIR-SWIR domain; 3) The conventional exponential function of wavelength used for ased does not reflect the spectral curvature well, which further affects the closure of Rs spectrum and the accuracy in retrieving IOPs if an exponential function is used.

Acknowledgements: NASA, NOAA, UMB, and CNSF.