The PanFTS Instrument Concept

The Panchromatic Fourier Transform Spectrometer (PanFTS) is an Instrument Incubator Program (IIP) funded development to build and demonstrate a single instrument capable of meeting or exceeding all GEO-CAPE requirements. The PanFTS design combines measurement capabilities for IR (e.g., TES) and UV-Vis (e.g., OMII) in a single package (including full spatial coverage), plus the ability to measure ocean color.

GEO-CAPE Flight Instrument Design Drivers

- **Capability**
 - **Wide-Field**
 - **Narrow-Field**
 - **Comments**

- **Field of regard**
 - 50° N to 45° S latitude
 - 30° to 120° longitude
 - Approximately 11,000 km by 11,000 km

- **Spatial sampling geometry**
 - 250 m ground sampling distance at nadir
 - 500 m ground sampling distance at zenith

- **Spectral range**
 - 0.5 μm to 15 μm
 - 0.35 μm to 2.1 μm

- **Spectral resolution**
 - 0.2 cm⁻¹
 - 0.5 cm⁻¹

- **Spatial SNR**
 - 1000
 - 1000

- **Temporal SNR**
 - 2
 - 2

- **Sampling interval**
 - Approximately hourly
 - Approximately hourly

- **Lifetime**
 - 5 years
 - 5 years

- **Reliability**

PanFTS Spectral and Temporal Coverage

High spectral resolution (0.05 cm⁻¹) and wide spectral sensitivity (from 5 μm to 2.5 μm) allows simultaneous observations of reflected sunlight and thermal emission (day/night) enabling retrieval of several important species such as:

- **Greenhouse Gases:** CO₂, CH₄, N₂O, O₃, H₂O
- **Dynamical Tracers:** CO₂, CH₄, N₂O, O₃, H₂O

Need to measure several species with high temporal and vertical resolution to capture rapidly evolving tropospheric chemistry.

PanFTS IIP Instrument Block Diagram

- **Infrared Focal Plane Array**
 - JPL-designed digitizer employs dual 8-bit, 5 MHz ADC's interfaced to a Xilinx FPGA with ethernet connection to host processor (storage/display)
 - FPGA board controls the operation of the FPA via digital isolators in the interface box
 - FPGA board captures data (from ADCs) in internal HW FIFOs
 - DMA engine transfers data packets from HW FIFOs to main memory
 - Raytheon 256x256 InSb array bump-bonded to a CMOS readout IC (ROIC) with twin outputs / references and windowing capability
 - 1.5 μm spectral response, LN₂ cooled in custom dewar
 - 8x8 pixel window can be read at 10 kHz frame rates with a 5 MHz clock

- **UV/Visible Focal Plane Array**
 - UV/Vis Hybrid CMOS FPA's, 206 photodetectors have been manufactured by Teledyne
 - Measured quantum efficiency is 80-90% (>50% from 400-1000 nm)

Optical Path Difference Mechanism

- OPDM is a flexure-based parallelogram mechanism that controls the optical path difference between the fixed and moving arms in the Michelson interferometer
- OPDM driving requirements:
 - Maximum optical path difference: 10 cm (physical travel 5 cm)
 - Maximum mirror tip/tilt error: < 1 micronrad
 - Full translation duration: 1 minute
 - Velocity stability: better than 1% over the full range of travel
 - Operating temperature: 180-320 K
 - Operational lifetime: 5 years (more than 2.6 million cycles)
- Heritage: JPL FTUVS instrument at Table Mountain Facility which has 12 years of continuous operation

Summary

- **PanFTS Capabilities and Development Status**
 - OSSE results (see Bowman poster) confirm panspectral retrieval benefits (vertical profiling, boundary layer visibility)
 - IIP optical design has continuous sensitivity over 0.4 – 5 μm spectral range
 - IR FPA testing is ready to begin
 - Visible FPA ROIC design incorporating parallel sigma-delta ADC's is complete
 - Sigma-delta ROIC performance has been verified by simulations
 - ROIC masks are made – semiconductor fabrication begins in 4-6 weeks
 - OPD mechanism is designed and built – characterization testing underway
 - IIP instrument fabrication and assembly has begun
 - Field testing will be done at JPL’s ML Wilson and Table Mountain facilities

Acknowledgements

This research was carried out by the Jet Propulsion Laboratory, California Institute of Technology under contract with the National Aeronautics and Space Administration. Support provided by the NASA Earth Science Technology Office Instrument Incubator Program is gratefully acknowledged.

Copyright 2009 California Institute of Technology. Government sponsorship acknowledged.